Publication

  1. Cossa, G., Parua, P.K., Eilers, M., & Fisher, R. P. (2021). Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets. Genes Dev. 35:1-19. https://doi.org/10.1101/gad.348315.121.
  2. Parua, P.K., Kalan, S., Benjamin, B., Sansó, M. & Fisher, R. P. (2020). Distinct Cdk9-phosphatase switches act at the beginning and end of elongation by RNA polymerase II. Nat. Commun. 11(1):4338. https://doi.org/10.1038/s41467-020-18173-6.
  3. Sansó, M.,* Parua, P. K.,* Pinto, D., Svensson, J. P., Pagé, V., Bitton, D. A., MacKinnon, S., Garcia, P., Hidalgo, E., Bähler, J., Tanny, J. C. & Fisher, R. P. (2020). Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Res. 48(13):7154-7168. https://doi.org/10.1093/nar/gkaa474. * Equal contribution.
  4. Parua, P. K. & Fisher, R. P. (2020). Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat. Chem. Biol. 16(7):716-724. https://doi.org/10.1038/s41589-020-0563-4.
  5. Parua, P. K., Booth, G. T., Sansó, M., Benjamin, B., Tanny, J. C., Lis, J. T. & Fisher, R. P. (2018). A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II. Nature. 558(7710):460-464. https://doi.org/10.1038/s41586-018-0214-z.
  6. Booth, G. T., Parua, P. K., Sansó, M., Fisher, R. P. & Lis, J. T. (2018). Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Nat. Commun. 9(1):543. https://doi.org/10.1038/s41467-018-03006-4.
  7. Parua, P. K., Dombek, K. M. & Young, E. T. (2014). Yeast 14-3-3 functions as a comodulator of transcription by inhibiting coactivator functions. J. Biol. Chem. 289(51):35542-60. https://doi.org/10.1074/jbc.M114.592287.
  8. Parua, P. K. & Young, E. T. (2014). Binding and transcriptional regulation by 14-3-3 (Bmh) requires residues outside of the canonical motif. Eukaryotic Cell. 13(1):21-30. https://doi.org/10.1128/EC.00240-13.
  9. Braun, K. A., Parua, P. K., Dombek, K. M., Miner, G. E. & Young, E. T. (2013). 14-3-3 (Bmh) proteins regulate combinatorial transcription following RNA Pol II recruitment by binding at Adr1-dependent promoters in Saccharomyces cerevisiae. Mol. Cell. Biol. 33(4):712-24. https://doi.org/10.1128/MCB.01226-12.
  10. Young, E. T., Zhang, C., Shokat, K. M., Parua, P. K. & Braun, K. A. (2012). The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J. Biol. Chem. 287(34):29021-34. https://doi.org/10.1074/jbc.M112.380147.
  11. Parua, P. K., Ryan, P. M., Trang, K. & Young, E. T. (2012). Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. Mol. Microbiol. 85(2):282-98. https://doi.org/10.1111/j.1365-2958.2012.08112.x.
  12. Bandyopadhyay, K., Parua, P. K., Datta, A. B. & Parrack, P. (2011). Studies on Escherichia coli HflKC suggest the presence of an unidentified l factor that influences the lysis-lysogeny switch. BMC Microbiol. 11:34. https://doi.org/10.1186/1471-2180-11-34.
  13. Parua, P. K., Ratnakumar, S., Braun, K. A., Dombek, K. M., Arms, E., Ryan, P. M. & Young, E. T. (2010). 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol. Cell. Biol. 30(22):5273-83. https://doi.org/10.1128/MCB.00715-10.
  14. Bandyopadhyay, K., Parua, P. K., Datta, A. B. & Parrack, P. (2010). Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lCII in vitro. Arch. Biochem. Biophys. 501(2):239-43. https://doi.org/10.1016/j.abb.2010.06.030.
  15. Parua, P. K., Mondal, A. & Parrack, P. (2010). HflD, an Escherichia coli protein involved in the lambda lysis-lysogeny switch, impairs transcription activation by lCII. Arch. Biochem. Biophys. 493(2):175-83. https://doi.org/10.1016/j.abb.2009.10.010.
  16. Parua, P. K., Datta, A. B. & Parrack, P. (2010). Specific hydrophobic residues in the α4 helix of λCII are crucial for maintaining its tetrameric structure and directing the lysogenic choice. J. Gen. Virol. 91(Pt 1):306-12. https://doi.org/10.1099/vir.0.015040-0.